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Abstract. We consider the issue of in-principle limits to the finite-time operation of a cycling
working fluid acting as an agent in the transfer of heat among three heat reservoirs. The set of
feasible operations of such a heat engine is explicitly described and its boundary is characterized
as the set of operations which allocate time optimally among the heat conduction branches for
a wide variety of cost functions. One point on this boundary represents the operation that
maximizes the heat output at the high-temperature heat reservoir. There is a natural notion of
efficiency for such an operation and the result in this case generalizes the well known result of
Curzon and Ahlborn for the efficiency of a Carnot-like heat engine at maximum power.

1. Introduction

The present paper continues the remarkable story of heat engines operating in finite time.
The problem has been treated in many ways by numerous authors over the past 20 years
and yet it appears to be an inexhaustible vein of interesting structure [1–5]. These efforts
can be classified into two categories.

(1) Simple models designed to understand the basic physics of the limitations imposed
on the set of operations of a heat engine by the constraint of finite time [3, 4]. The aim in
these studies is to find in-principle bounds on the net effects of a process.

(2) More realistic models approaching the operation of real heat engines as engineering
systems [5]. The aim of these studies is to identify and model loss mechanisms in currently
operating heat engines.

In the present paper we pursue the former goal by studying a special model heat engine
in order to gain an understanding of its possible operations. The model that we treat
here is an extension of our previous work [1, 2] to heat engines working between three
heat reservoirs. For ready reference, engines working between three heat reservoirs have
been dubbed ‘tricycles’ [6–11] and provide interesting generalizations of the customary two
heat-reservoir and one work-reservoir case.

The framework we use has several features which have become standard for exploring
in-principle limitations on finite-time operations. One such feature is to assume that our
processes all areendoreversible. This term, coined by Rubin [12], literally means ‘internally
reversible’ and allows us to treat the subsystems participating in a process as being at
all times in quasi-equilibrium states. For the process considered here, such subsystems
are the working fluid and the three heat reservoirs. For the purpose of finding bounds,
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the assumption of endoreversibility can be rigorously and generally justified through a
theorem of Orlov and Berry [13], which is proved by considering the optimal control of
thermodynamic processes. Such control is pursued subject to the constraints imposed by the
dynamical equations describing the time evolution of our subsystems. A general result in
optimization theory guarantees that if constraints are eliminated, the resulting optimum can
only improve. This is sufficient to imply that calculations using endoreversible processes
provide rigorous bounds which must be obeyed by any process.

A second feature of our framework is to assume that only the transport of heat across
a boundary is irreversible. This is a strong assumption since it allows us to let all other
processes occur reversibly and at arbitrary rates. The justification lies again in the fact that
the results thus obtained bound what can happen in real processes. The advantage here is
that this feature allows us to focus our attention on the heat exchange branches and take
any adiabatic branches to be instantaneous and reversible [14].

Our discussion is thus reduced to an idealization of real systems that is useful as a
physical limit, i.e. in the same spirit as a reversible process. Rather than having to deal
with distributed systems with infinite degrees of freedom, we deal at each instant with
quasi-equilibrated subsystems with a finite number of degrees of freedom. The analysis
can, however, be even further simplified. For instance, it was shown in [15] that, under
quite general conditions, the optimization of heat exchange with a constant-temperature heat
reservoir is obtained when the working fluid temperature is kept constant†. This is, in fact,
a special case of a general theorem obtained by Rosonoer and Tsirlin [4]. Their general
result says that for a process in which both the objective function and the constraints can
be expressed as time integrals of the thermodynamic functions of state, the optimal control
is always piecewise constant—taking on at mostm + 1 values, wherem is the number of
constraints.

Our results for a tricycle reduce to those for more conventional heat engines in the limit
as the temperature of one of the reservoirs tends to infinity. In this limit, one heat reservoir
becomes a work reservoir which is able to transfer entropiless energy at any temperature
[6]. Our results thus generalize the well known results of Novikov–Curzon–Ahlborn [5, 16]
to tricycle processes. Explicit expressions are derived for many interesting quantities which
bound the values of these quantities in real heat engines.

A surprising feature of our analysis is the fact that we can derive a host of results
without needing to specify the objective function. The analysis can be carried out assuming
only that the objective function can be written in terms of the net effects and that the total
time is constrained. The finite-time constraint specifies the boundary of the set of possible
operations and any reasonable objective function pushes us to this boundary.

The theory of heat engines working between three heat reservoirs has useful realizations.
A common example is a propane powered refrigerator often found in recreational vehicles.
In this instance, heat flows from the highest temperature (the flame) to the atmosphere, to
power as much heat removal from the lowest temperature as possible. The reverse process
also has commercial applicability. For example, domestic heat can be provided by the
conduction of heat at an intermediate temperature (a subterranean reservoir) to the lowest
temperature (the atmosphere), rejecting some of it to the highest temperature. In this case
the objective is to produce as much heat as possible at the highest temperature. In view of
the fact that conventional heat engines producing work are a special case of this example
as the hottest temperature tends to infinity, we will refer to this instance as aheat engine.

† The constant temperatures of the working fluid and the reservoir are, of course, not equal to each other if the
process is to take place in finite time.
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The layout of the present paper is as follows. In section 2 we carry out the optimization
of the time allocation among the three heat-exchange branches. Surprisingly, we find that
we should always use the same total time for heat absorption as for heat discharge. In
section 3 we consider the case of different objective functions and represent the set of
optimal operations in a planar diagram similar to the one employed in [2]. In section 4
we relate these operations back to the temperatures of the working fluid during the cycle.
In section 5, we complete our analysis by considering operations which are relatively less
interesting in the sense of economically desirable control but give a broader perspective on
the complete set of optimal operations. The paper ends with section 6 where we make some
concluding remarks.

2. Optimal time allocation

We consider a system undergoing a tricycle of operations conducted over a total timeτ

during which it exchanges heat with three reservoirs at fixed temperaturesT o
1 , T o

2 , andT o
3 ;

see figure 1. To fix ideas, we chooseT o
j such thatT o

3 > T o
1 > T o

2 , so that in the limit
T o

3 → ∞ the third reservoir assumes the role of a ‘work reservoir’ (with which energy
is exchangedwithout entropy production, see equation (2)) and our process reverts to a
conventional cycle involving only two reservoirs at temperaturesT o

1 and T o
2 . Denoting

the time spent in contact with the individual reservoirs asτ1, τ2, andτ3, respectively, the
amounts of heat transferred from the reservoirs to the system, assuming Newton’s law of
heat transfer, would be

Qj = κj τj (T o
j − Tj ) j = 1, 2, 3 (1)

whereTj are the temperatures of the system held fixed during the three periods of contact,
while κj are the thermal conductances associated with the relevant surfaces of contact; for
simplicity, we take allκj to be the same and denote them by a common symbolκ. The

Figure 1. The operation of a tricycle.
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resulting entropy changes of the reservoirs are then given by

σ o
j = −

Qj

T o
j

= −κτj (T
o
j − Tj )
T o
j

(2)

while the corresponding changes for the system, assuming endoreversibility, would be

σj = Qj

Tj
= κτj (T

o
j − Tj )
Tj

. (3)

From (2) and (3) it follows that

1

σj
+ 1

σ o
j

= − 1

κτj
(4)

so that

σj = −
σ o
j κτj

σ o
j + κτj

. (5)

We note that in the limitτj →∞, σj →−σ o
j and the process involved becomes reversible;

otherwise, it is necessarily irreversible. We also note that the cycle under study must
conform to the obvious constraints∑

j

Qj = 0 (6a)∑
j

σj = 0 (6b)∑
j

τj = τ. (6c)

If the performance of our cycle is characteristic of a heat engine, then it would be
natural for us to optimize the quantityQ3; if, on the other hand, it is characteristic of a
refrigerator (or a heat pump), then we would like to optimizeQ2 (orQ1). To accommodate
all these cases, we may optimize anarbitrary function f (Qj)—subject, of course, to the
constraints (6). Expressing all our quantities in terms of theexternal variablesσ o

j and τj ,
the Lagrangian of the problem takes the form

L(σ o
j , τj ) = f (σ o

j )− λ
∑
j

T o
j σ

o
j − µ

∑
j

σ o
j κτj

σ o
j + κτj

− ν
(∑

j

τj − τ
)

(7)

whereλ, µ andν are the Lagrange undetermined multipliers. Optimization with respect to
τj leads to the conditions

0= −µκ (σ o
j )

2

(σ o
j + κτj )2

− ν j = 1, 2, 3. (8)

This shows that the constantsµ and ν must be of opposite signs. Introducing a set of
dimensionless parametersuj , defined by the relations

uj = κτj

σ o
j

(9)

conditions (8) may be written as

1+ uj = εj
√
−µκ/ν j = 1, 2, 3 (10)
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whereεj = +1 or−1, depending on the actual direction of heat transfer between the system
and thej th reservoir. To see this explicitly, we first observe that the quantity

1+ uj
uj
= σ o

j + κτj
κτj

= −σ
o
j

σj
= Tj

T o
j

> 0. (11)

Next, we infer, from equations (9) and (11), that bothuj and (1+uj ) have the same sign as
σ o
j . Equation (10) then tells us thatεj = +1 or−1 according to whetherσ o

j is positive or
negative (which indeed is related to the direction of heat transfer). This leads one naturally
to consider eight different process types, as discussed in the appendix, based on the signs
of εj . The types that evoke most interest are as follows.

(i) A process of type VI, which pertains to aheat enginewith Q1 > 0, Q2,3 < 0
and henceσ o

1 < 0, σ o
2,3 > 0; it follows that for this caseε1 = −1 while ε2 = ε3 = +1.

Equation (10) then leads us to the important result

u2 = u3 = −2− u1 (12)

so that, whileu2,3 > 0, u1 < −2.
(ii) A process of type III, which pertains to arefrigerator (or aheat pump), withQ1 < 0,

Q2,3 > 0 and henceσ o
1 > 0, σ o

2,3 < 0; it follows that nowε1 = +1 whereasε2 = ε3 = −1.
Once again, equation (12) holds (though nowu1 > 0 while u2 = u3 < −2).

Two other possibilities, that evoke lesser interest, are considered later in section 5.
Returning to the question of optimal time allocation, as determined by conditions (10)

in conjunction with constraints (6), we observe that, in view of equations (5) and (9), the
constraint (6b) can be written as∑

j

κτj

1+ uj = 0. (13)

Combining (13) with (10), we obtain the remarkable result∑
j

εj τj = 0 (14)

which shows that, regardless of the nature of the functionf (σ o
j ) and regardless of the cycle

chosen, theoptimal time allocationis such that the system spends as much time absorbing
heatfrom the reservoir(s) as it spends rejecting itto the reservoir(s). Thus, for heat engines
as well as refrigerators (and heat pumps)

τ1 = (τ2+ τ3) = 1
2τ. (15)

We now recall constraint (6a), which states that∑
j

T o
j σ

o
j = κ

∑
j

(
T o
j τj

uj

)
= 0. (16)

Equations (15) and (16), along with the fact thatu2 = u3, yield optimalτj :

τ1 = 1

2
τ (17a)

τ2 = 1

2
τ
u1T

o
3 + u2T

o
1

u1(T
o

3 − T o
2 )

(17b)

τ3 = 1

2
τ
−u1T

o
2 − u2T

o
1

u1(T
o

3 − T o
2 )

. (17c)
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The quantitiesQj(= −T o
j (κτj /uj )) are then given by

Q1 = −1

2
κτ
T o

1

u1
(18a)

Q2 = −1

2
κτ

T o
2

T o
3 − T o

2

(
T o

3

u2
+ T

o
1

u1

)
(18b)

Q3 = 1

2
κτ

T o
3

T o
3 − T o

2

(
T o

1

u1
+ T

o
2

u2

)
(18c)

while the net rate of entropy production is given by

D = 1

τ

∑
j

κτj

uj
= 1

2
κ

(
1

u1
+ 1

u2

)
(19a)

= − κ

u1u2
> 0 (19b)

becauseu1 andu2 are of opposite signs.
The foregoing expressions are optimal insofar as time allocation on the three branches

of the cycle is concerned. They are still functions of the parametersu1 andu2 which allow
room for further optimization—depending on what purpose our cycle is supposed to achieve.
To appreciate the end results, it seems advisable to first put the results of this section in
a geometrical framework that enables us to see the various aspects of this problem in a
somewhat broader perspective.

3. Representation in the (P, D)-plane and further optimization

In the spirit of [2], we examine the results of the previous section in the (P,D)-plane
whereP is the analogue of the ‘power generated by a heat engine’ whileD is the net rate
of entropy production in the cycle (also called the ‘degradation’). By (18c) and (19a), we
have

P = −Q3

τ
= −1

2
κ

T o
3

T o
3 − T o

2

(
T o

1

u1
+ T

o
2

u2

)
(20)

and

D = 1

2
κ

(
1

u1
+ 1

u2

)
. (21)

Solving (20) and (21), we get

1

u1
= −2(P̃ + T o

2D)

κ(T o
1 − T o

2 )
(22a)

1

u2
= 2(P̃ + T o

1D)

κ(T o
1 − T o

2 )
(22b)

whereP̃ denotes the ‘effective power’ of the cycle, viz

P̃ = P T
o

3 − T o
2

T o
3

. (23)

Note that, asT o
3 →∞, P̃ becomes synonymous withP . Now, substituting (22) into (19b),

or by using the fact thatu1+ u2 = −2, we obtain the desired relationship

(P̃ + T o
1D)(P̃ + T o

2D)− 1
4κ(T

o
1 − T o

2 )
2D = 0 (24)
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which represents a hyperbola in the (P̃ ,D)-plane, with asymptotes

P̃ + T o
1D = − 1

4κ(T
o

1 − T o
2 ) (25a)

P̃ + T o
2D = 1

4κ(T
o

1 − T o
2 ). (25b)

Equation (24) is plotted in figure 2, where it appears as the hyperbolic arc DCOAB. Points
on this hyperbola represent all possible processes for which the time allocation is optimized;
in fact, these processes can be parametrized by the single quantityu2/u1 (see (17)).

Figure 2. All feasible processes for a tricycle depicted in the (P̃ ,D)-plane. The arc OAB relates
to processes of type VI (heat engines), arc OCD to type III (refrigerators and heat pumps), arc
BF to type II, and arc DF to type IV; for classification of these processes, see the appendix.

The reversible cycle, which requires allτj to be infinite, is represented by the origin O of
this plane; by equations (12), (20) and (21), this corresponds to bothu1 andu2 being infinite
in magnitude while the ratiou2/u1 approaches−1. The analogue of the Curzon–Ahlborn
cycle is depicted by point A wherẽP is maximum; by (12) and (20), this corresponds to
the ratiou2/u1 being equal to−(T o

2 /T
o

1 )
1/2, with

u1 = −
2
√
T o

1√
T o

1 −
√
T o

2

u2 =
2
√
T o

2√
T o

1 −
√
T o

2

. (26)

The corresponding values ofP andD turn out to be

PA = 1

4
κ

T o
3

T o
3 − T o

2

(
√
T o

1 −
√
T o

2 )
2 (27a)

DA = 1

4
κ
(
√
T o

1 −
√
T o

2 )
2√

T o
1 T

o
2

(27b)

while

(Q1)A = 1
4κτ

√
T o

1 (
√
T o

1 −
√
T o

2 ). (28)

These results are essentially the same as those obtained previously, except that the ‘power
attained’ now seems enhanced by the factorT o

3 /(T
o

3 − T o
2 ). The reason for this apparent

enhancement of power lies in the fact that what this engine delivers to reservoir 3 is not ‘true
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mechanical work’—it is only ‘high-grade heat’ which, if converted into true mechanical
work (by utilizing the best means available and the coldest reservoir available) would
produce no more than the amountQ3(1− T o

2 /T
o

3 ), thus bringing the true efficiency of this
cycle down to the value attained in the Curzon–Ahlborn cycle.

The general expression for the power efficiencyη can be written down with the help of
equations (18a) and (18c), with the result

η = −Q3

Q1
= T o

3

T o
3 − T o

2

(
1+ u1T

o
2

u2T
o

1

)
. (29)

Now, apart from the two special cases noted above, we may also mention the ‘complete
waste’ process, depicted by point B in figure 2, which corresponds toη = 0 and hence to
the ratiou2/u1 being equal to−T o

2 /T
o

1 ; this means that now

u1 = − 2T o
1

T o
1 − T o

2

u2 = 2T o
2

T o
1 − T o

2

(30)

while

PB = 0 (31a)

DB = κ (T
o

1 − T o
2 )

2

4T o
1 T

o
2

. (31b)

With Q3 = 0, this process implies a direct transfer of heat from reservoir 1 to reservoir 2;
in fact, the same is true of all processes lying on the straight line OB.

We now turn our attention to the case where our tricycle acts as a refrigerator (Q1 < 0,
Q2,3 > 0); equations (12) and (18) now tell us that (i)u1 > 0, (ii) u2 < −2, while (iii)
the ratiou2/u1 lies between−1 and−T o

3 /T
o

1 . The limit u2/u1 → −1 corresponds to the
reversible case (u1→∞, u2→−∞), with the coefficient of performance

ω = Q2

Q3
= T o

2 (u1T
o

3 + u2T
o

1 )

T o
3 |u1T

o
2 + u2T

o
1 |

(32)

−→ T o
3 − T o

1

T o3
ωR (33)

whereωR is the coefficient of performance of the corresponding Carnot refrigerator

ωR = T o
2

T o
1 − T o

2

. (34)

Once again, the reduction factor,(T o
3 − T o

1 )/T
o

3 , appearing in (33) can be understood in
terms of the fact that what we are utilizing here is not ‘true mechanical work’ but only ‘high-
grade heat’ provided by a source at temperatureT o

3 ; for transfer to reservoir 1, heatQ3 is no
more effective than an amount of workW = Q3(1−T o

1 /T
o

3 ). The limit u2/u1→−T o
3 /T

o
1

corresponds toQ2→ 0 and hence to a direct transfer of heat from reservoir 3 to reservoir 1;
this limit is depicted by point D in figure 2; it can be shown thatQ2 = 0 for all processes
lying on the straight line OD.

Between the two extremes, O and D, lies a special case, depicted by point C, whereQ2

is optimal; this happens when the ratiou2/u1 = −(T o
3 /T

o
1 )

1/2, so that

u1 =
2
√
T o

1√
T o

3 −
√
T o

1

u2 = −
2
√
T o

3√
T o

3 −
√
T o

1

(35)

while

ωC =
T o

2 (
√
T o

3 −
√
T o

1 )√
T o

3 (
√
T o

1 T
o

3 − T o
2 )
. (36)
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In the limit T o
3 → ∞, the points C and D both run off to infinity and we recover the

situation studied in [2].

4. An alternative representation of the tricycle

For a broader understanding of the situation under study, we may relate the external
quantitiesP̃ andD with the temperaturesTj of the system itself as it goes through the
tricycle process described earlier. First, in view of relations (11) and (12), we observe that

T2

T o2
= T3

T o3
. (37)

It is, therefore, sufficient to consider only one of these quantities, sayT2/T
o

2 . Second, we
introduce the parametersβ andβo defined through the standard relations

β = T2

T1
βo = T o

2

T o
1

(38)

and note that the ratio
β

βo
= T2/T

o
2

T1/T
o

1

= (1+ u2)/u2

(1+ u1)/u1
= −u1

u2
(39)

so that

u1 = − 2β

β − βo
u2 = 2βo

β − βo
. (40)

Equations (20), (21) and (23) then give

P̃ = 1

4
κT o

1
(β − βo)(1− β)

β
(41)

and

D = 1

4
κ
(β − βo)2

ββo
(42)

which, apart from the replacement ofP by P̃ , are the same as the expressions (28b) and
(29b) of [2], with the parameterα = 1 (corresponding to the optimal time allocation). The
power efficiencyη, as given by (29), now takes the form

η = T o
3

T o
3 − T o

2

(1− β) βo < β < 1 (43)

which agrees with expression (26) of [2], except for the extra factor arising from the
temperature,T o

3 , of the hottest reservoir. It is quite straightforward to see that the points O,
A and B of figure 2 correspond to

β = βo,
√
βo, and 1 (44)

respectively.
It is noted that expressions (41) and (42) apply to a refrigerator cycle as well, but with

β < βo. The coefficient of performance of this cycle, as given by equation (32), now takes
the form

ω = β − γ o

1− β γ o = T o
2

T o
3

(45)

which may be compared with equation (43) of [2]. The points O, C and D now correspond
to

β = βo,
√
βoγ o, andγ o (46)

respectively.
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5. Other feasible processes

For completeness, we now develop the main features of the tricycle processes of type II
(see the appendix) in which thenet transfer of heat takes place from the hotter reservoirs 3
and 1 to the coldest reservoir 2 and of type IV in which thenet transfer takes place from the
hottest reservoir 3 to the colder reservoirs 1 and 2. A special feature of these processes is
that they allow optimization of the heat,Q1, exchanged by the reservoir at the intermediate
temperatureT o

1 .
(i) For a process of type II,Q1,3 > 0, Q2 < 0 and henceσ o

1,3 < 0, σ o
2 > 0; it follows

that for this caseε1 = ε3 = −1 while ε2 = +1. Accordingly,u1 = u3 < −2 while u2 > 0
such thatu2+ u3 = −2. We now get

τ1 = 1

2
τ
u2T

o
3 + u3T

o
2

u2(T
o

3 − T o
1 )

τ2 = 1

2
τ τ3 = 1

2
τ
−u2T

o
1 − u3T

o
2

u2(T
o

3 − T o
1 )

(47)

so that

Q1 = −1

2
κτ

T o
1

T o
3 − T o

1

(
T o

2

u2
+ T

o
3

u3

)
(48a)

Q2 = −1

2
κτ
T o

2

u2
(48b)

Q3 = 1

2
κτ

T o
3

T o
3 − T o

1

(
T o

2

u2
+ T

o
1

u3

)
. (48c)

The quantitiesP̃ andD are now given by

P̃ = −1

2
κ
T o

3 − T o
2

T o
3 − T o

1

(
T o

2

u2
+ T

o
1

u3

)
(49)

and

D = 1

2
κ

(
1

u2
+ 1

u3

)
= − κ

u2u3
> 0 (50)

respectively. Eliminatingu2 andu3 from these equations, we obtain the relation(
P̃
T o

3 − T o
1

T o
3 − T o

2

+ T o
1D

)(
P̃
T o

3 − T o
1

T o3 − T o2
+ T o

2D

)
− 1

4
κ(T o

1 − T o
2 )

2D = 0 (51)

which may be compared with equation (24) that holds for processes of type III and VI.
Equation (51) is plotted in figure 2 where it appears as the hyperbolic arc BF (that

is found to be continuous with the previous curve DCOAB, though with a discontinuous
slope at point B). The extremities B and F of this arc are characterized by the respective
values−T o

1 /T
o

2 and−T o
3 /T

o
2 of the parameteru3/u2 so that whileQ3 = 0 at B,Q1 = 0

at F; in fact, it can be shown thatQ1 = 0 for all processes on the straight line OF.
Between the extremes B and F, there may exist a point E whereQ1 is optimal (actually, a
maximum). By equations (48), this happens whereu3/u2 = −(T o

3 /T
o

2 )
1/2 and is possible

only if T o
1 < (T o

2 T
o

3 )
1/2. If T o

1 → (T o
2 T

o
3 )

1/2, the point E approaches B.
(ii) For a process of type IV,Q1,2 < 0, Q3 > 0 and henceσo1,2 > 0, σo3 < 0; it follows

that for this caseε1 = ε2 = +1 while ε3 = −1. Accordingly,u1 = u2 > 0 while u3 < −2
such thatu1+ u3 = −2. We now get

τ1 = 1

2
τ
−u1T

o
3 − u3T

o
2

u3(T
o

1 − T o
2 )

τ2 = 1

2
τ
u1T

o
3 + u3T

o
1

u3(T
o

1 − T o
2 )

τ3 = 1

2
τ (52)
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so that

Q1 = 1

2
κτ

T o
1

T o
1 − T o

2

(
T o

2

u1
+ T

o
3

u3

)
(53a)

Q2 = −1

2
κτ

T o
2

T o
1 − T o

2

(
T o

1

u1
+ T

o
3

u3

)
(53b)

Q3 = −1

2
κτ
T o

3

u3
. (53c)

The quantitiesP̃ andD are now given by

P̃ = 1

2
κ
T o

3 − T o
2

u3
(54)

and

D = 1

2
κ

(
1

u1
+ 1

u3

)
= − κ

u1u3
> 0 (55)

respectively. Eliminatingu1 andu3 from these equations, we obtain the relation

P̃ 2− (T o
3 − T o

2 )P̃D − 1
4κ(T

o
3 − T o

2 )
2D = 0 (56)

which differs significantly from the corresponding equations, (24) and (51), obtained for
other processes.

Equation (56) is also plotted in figure 2 where it appears as the hyperbolic arc DF (that
is found to be continuous with the previous curves OCD and BF, though with discontinuous
slopes at points D and F). The extremities D and F of this arc are characterized by the
respective values−T o

3 /T
o

1 and−T o
3 /T

o
2 of the parameteru3/u1 so that whileQ2 = 0 at

D, Q1 = 0 at F. Between the extremes D and F, there may exist a point E′ whereQ1 is
optimal (actually, a minimum). By (53), this happens whereu3/u1 = −(T o

3 /T
o

2 )
1/2 and is

possible only ifT o
1 > (T o

2 T
o

3 )
1/2. If T o

1 → (T o
2 T

o
3 )

1/2, the point E′ approaches D.

6. Conclusions

The present paper generalizes the analysis of [1] and [2] to heat engines working between
three heat reservoirs (tricycles). The results obtained here reduce to the previous ones in
the limit as the hottest reservoir temperature tends to infinity. For three finite temperatures,
our results provide generalizations of the Novikov–Curzon–Ahlborn result to the case of
tricycles.

Our geometric analysis of the time-optimal tricycle operations shows that the single
hyperbola in the (P,D)-plane obtained in [2] becomes a convex region bounded by three
different hyperbolas. As in [2], the points on the boundary of this region represent exactly
those processes which allocate time optimally among the different branches of the process.

One surprising feature of our analysis is that the optimal time allocation among the
branches in a tricycle can be obtained without specifying the cost function and by assuming
that such cost depends only on the net effects of the process. Previous results based
in Riemannian geometric structures on the set of equilibrium states [17, 18] have also
hinted that the optimal time allocation during a process can be obtained with considerable
generality. These previous analyses have obtained optimal time allocation only for the
objective of minimizing total entropy production. In this sense, the present work extends
those results, though the optimal time allocation for tricycles does not seem to come from
a Riemannian metric.
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One feature of our processes (as well as of those in [1] and [2]) is that they possess a
minimum time. Roughly stated, if a certain amount of heat exchange must occur through
a set of given conductances, then it must take at least a certain amount of time. [2]
dwelt on this point and introduced the idea of time efficiency for such processes. In that
sense, all processes discussed in the present paper have a time efficiency of one, and this
is exactly what places them on the boundary of the feasible region in ourP–D diagram.
As discussed in [2], having a time efficiency of one corresponds to the process taking
place in minimum time. The well known duality between an objective function and a
constraint for an optimization problem indeed allows a general reformulation of finite-time
thermodynamics problems in terms of minimum time. This reformulation is surprisingly
powerful and we have used it to explore a much larger class of problems in this area. The
results of that study will be reported in a subsequent paper.
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Appendix

In this appendix we summarize all sets of operations accessible to a tricycle. Considering
the directions of the arrows in figure 1, we clearly have eight possibilities for which signs
of Qj , the amounts of heat transferredfrom the various reservoirsto the system, are as
listed below; note that these signs are the same as those ofσj and hence are opposite to the
ones pertaining toσ o

j .

I II III IV V VI VII VIII

Reservoir 3 + + + + − − − −
Reservoir 1 + + − − + + − −
Reservoir 2 + − + − + − + −

It is straightforward to see that cases I and VIII violate the principle of energy
conservation while cases V and VII violate the principle of increase of entropy (remember
that, by assumption,T o

3 > T o
1 > T o

2 ). Cases II and IV (being the opposite of cases VII and
V, respectively) are dissipative and hence are of lesser interest in the present study. The
cases that evoke most interest are III and VI which, on the whole, exchange heat between
the reservoir at theintermediatetemperature,T o

1 , on the one hand, and the reservoirs at the
highestand thelowest temperatures,T o

3 andT o
2 , on the other; of these, the former pertains

to a refrigerator (or a heat pump), the latter to a heat engine.
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